TREATMENT OF BLADDER DYSFUNCTION AFTER NEUROLOGIC TRAUMA

LLOYD G. LEWIS, LT. COLONEL, M.C., A.U.S.

From the Walter Reed General Hospital, Washington, D.C.

ANATOMY

The great muscle of the bladder, the detrusor, is made up of interlacing fibers of smooth muscle derived from the cloacal membrane. Henle and Kohlschütz and Rosenthal in 1856 described circular and longitudinal detrusor fibers which invested themselves around the vesical orifice so that the longitudinal fibers passed through the circular fibers at the outlet. Young and Wesson showed that the fibers intermingled in no set pattern over the fundus. Wesson beautifully demonstrated the orderly arrangement of fibers at the true internal sphincter has ever been described. Griffiths has shown normal individuals no thickening of musculature exists at the vesical orifice.

Within the bladder the trigonal muscle is situated between the ureteral orifices and the prostatic urethra. The trigonal fibers and the muscles pass through the detrusor fibers of the orifice. This mechanical arrangement, the hypertrophy of the trigonal muscle in cases of median prostatic obstruction, and cystoscopic observation, prompted Young to assign to the trigone the function of opening the vesical orifice for micturition.

INNERVATION

The detrusor is innervated by the autonomic nervous system by fibers from the 2d, 3d and 4th sacral roots which pass by way of the hypogastric plexus on the lateral surfaces of the rectum. Sensation of stretch or distention is elicited from nerve endings on the muscle bundles passing through nerve fibers traversing the 2d, 3d and 4th dorsal sacral roots. Dees has produced a type of bladder by experimentally dividing these roots bilaterally. Sensation of pain and temperature from the bladder are recorded through nerves which pass through the hypogastric plexus by way of the presacral nerve to enter the thoraco-lumbar cord. Sympathetic fibers from the lumbar segments innervate the blood vessels of the bladder wall but it is improbable that the sympathetic fibers have any direct influence on the detrusor muscle. The trigone as well as the musculature of the prostate, seminal vesicles and ejaculatory ducts derived from the wolffian duct, are innervated by the sympathetic nervous system.

PHYSIOLOGY OF MICTURITION

The desire to urinate is recorded from muscle tension irrespective of bladder volume (Langworthy, Kolb and Lewis). We have all experienced strong desire to urinate on small as well as on large bladder capacity. Through reflex action in the sacral cord the detrusor is a of the corpora cavernosa is also in the 2d and 3d sacral segments, the uninhibited phase is understandable. Detrusor stimulus from pressure in urination in the newborn is uninhibited reflexes have been acquired, urination can be inhibited by contraction of the detrusor. Urine is normally retained at the Lichtenberg, Leedham-Green, Barlow, et al., in beautiful cystographic studies the control is the ability of the detrusus to open the vesical orifice with the external sphincter exception that urination cannot be immediately after perineal prostatectomy.

Urinate only if the vesical orifice is a transurethral or suprapubic process as soon as the vesical orifice cannot be adapted anatomically for retention of urine. Operations for cure of obstruction at the vesical neck or prostatic resection may be relieved by a cuff. Otherwise operations for formation of a kink or constriction of the bladder neck may be correlated if we assume that the function of the trigone is essential in the normal individual and median obstructive prostatic obstruction. Sympathetic innervation by presacral nerve only be correlated if we assume the trigonal muscle by stretching the bladder widens at the onset of contraction of the trigone and at the on urination the function of the trigone is not essential in the normal individual with median prostatic obstruction.

Sympathetic innervation by presacral nerve only be correlated if we assume the trigonal muscle by stretching the bladder widens at the onset of contraction of the trigone and at the on urination the function of the trigone is not essential in the normal individual with median prostatic obstruction.

Sympathetic innervation by presacral nerve only be correlated if we assume the trigonal muscle by stretching the bladder widens at the onset of contraction of the trigone and at the on urination the function of the trigone is not essential in the normal individual with median prostatic obstruction.
DYSFUNCTION AFTER NEUROLOGIC TRAUMA

NEL, M.C., A.U.S.

ital, Washington, D.C.

Dysfunction of the vesical orifice, as described by Voelcker and Lichtenberg, Leedham-Green, Barringer and McKee, and by Uhle and Mackinney, in beautiful cystographic studies. The most important factor in urinary control is the ability of the detrusor to contract around the vesical orifice. Patients with the external sphincter shot away can retain urine and void normally except that urination cannot be suddenly voluntarily interrupted. Patients immediately after perineal prostatectomy may void at intervals through the perineal prostatic urethral fistula. Patients after radical perineal prostatectomy retain urine only if the vesical orifice is free to contract uninhibited by scar. Patients after transurethral or suprapubic prostatectomy, urinary control becomes normal as soon as the vesical orifice contracts freely. The voluntary sphincter is not adapted anatomically for retention of urine. Striated musculature has not the endurance for continuous maintenance of tone which is the great attribute of smooth muscle. Operations for cure of incontinence should primarily be directed to relief of obstruction at the vesical orifice. Incontinence following transurethral resection may be relieved by complete removal of prostatic tissue at the orifice. Otherwise operations for urinary control must be directed toward correction of a kink or constriction of the urethra externally as by gracilis transplant.

Since the detrusor and the trigonal muscles are antagonistically innervated, it was difficult for those of us who have observed, as Young has described, the contraction of the trigone at the onset of urination through the cystoscope, to correlate the function of the trigone in micturition. Apparently, trigonal action is not essential in the normal individual, but it is of great assistance to patients with median prostatic obstruction. Patients urinate normally after division of the sympathetic innervation by presacral neurectomy. The action of the trigone can only be correlated if we assume overflow innervation or direct stimulation of the trigonal muscle by stretching as the detrusor contracts and the base of the bladder widens at the onset of voiding. It seems improbable that trigonal contraction would open the vesical orifice unless contraction of the detrusor and action of the trigonal muscle occurs simultaneously. On the other hand, the sympathetic innervation of prostate, ejaculatory ducts, seminal vesicles and the trigone might suggest a sexual function for the trigonal muscle. After presacral neurectomy, ejaculation is impossible because of paralysis of the ejaculatory and prostatic musculature. After prostatectomy, ejaculation might be considered incomplete because of a weakened vesical orifice allowing sperm to enter the
bladder. However, Langworthy has shown that dogs do not ejaculate normally after transvesical section of the trigonal muscle. Contracting without the support of the detrusor, the trigone will thicken in its midportion at the vesical orifice, thus effectively preventing passage of semen into the bladder.

In the light of this physiologic concept, how can one justify presacral neurectomy in the treatment of the neurogenic bladder? Certainly section of the sympathetics will have no effect on a spastic vesical orifice. There being no true internal sphincter and no proven sympathetic innervation of the detrusor vesical orifice musculature, we must look for another explanation of the effect produced by this operation. When peripheral circulation is impaired as in fracture or by peripheral vascular disease, increase in vascularity can be accomplished by sympathectomy. We believe the same effect on vascularity of the bladder wall accounts for the increase in bladder tone following this operative procedure.

THE NEUROGENIC BLADDER

Since the bladder is controlled by reflex arcs through the brain and spinal cord, any interruption of either the motor or sensory sides of the reflex arc will make the bladder inefficient either for storage or evacuation of urine. Such a concept calls for differentiation of various types of dysfunction in correlation with the neurological defect. The urologist and the neurologist must cooperate in establishing the correct diagnosis before any logical form of treatment can be instituted.

THE TABETIC BLADDER

After division or injury to the dorsal sacral roots by trauma or disease (syphilis), sensation of bladder fullness is partially or completely lost. The patient with tabes dorsalis seldom has total loss of sensation of distention. After extensive injury or pelvic surgery, part or all of the sacral innervation may be lost. The patient has no desire and does not void. The bladder becomes distended and secondary atrophic changes occur. Because the detrusor is atrophic, dilatation of the vesical orifice is regularly noted unless prostatic obstruction complicates the picture. When the parasympathetic fibers are divided, detrusor contracture cannot occur. In either instance the reflex arcs are divided in the lower segment and no automaticity can develop.

LESIONS OF THE MOTOR PATHWAYS

When the motor pathways in the spinal cord are interrupted, voluntary urination with urgency and frequency occurs as in disseminated sclerosis or in cerebral arteriosclerosis. This clinical picture was described by Langworthy, Dees and Lewis, in 1935. The predominant motor innervation is from the left cerebral cortex. Patients with right hemiplegia, left brain lesion, are frequently incontinent. Patients with left hemiplegia have fewer bladder symptoms.

TRANSVERSE MYELITIS

When the spinal cord is completely divided above the level of L-1, one or more reflex arcs remain intact. The efficiency of the uninhibited automatic bladder
that dogs do not ejaculate normally.

BLADDER DYSFUNCTION TREATMENT AFTER NEUROLOGIC TRAUMA

Patients with lesions from C-VII to D-VII have fairly efficient involuntary voiding. Patients with lesions from D-VII to D-XII may have considerable automaticity but it is not very satisfactory in most instances and considerable residuum remains. Lesions at L-I, around the conus medullaris and in the cauda equina do not allow development of automatic bladders. These patients have retention and can only develop overflow incontinence.

ACUTE CEREBROSPINAL INJURY

The immediate effect of severe injury to the brain or spinal cord is urinary retention. This may result from either temporary or permanent injury to the spinal pathways. Hemorrhage, edema, or compression of the fibers without actual division of them results in spinal shock. Bladder innervation is interrupted for a period of a few hours to periods up to 6 to 8 months. Simple spinal shock is normally relieved within 48 hours. However, compression of the cord can exist until either postural or surgical correction of the impingement restores circulation and the undivided tracts regain their function of transmission of impulses. Although it has been the common teaching that cord fibers compressed for more than 48 hours are permanently damaged, we shall show that patients have regained bladder function weeks and even months after surgical decompression of the cord.

Spinal cord injury may result in either complete or partial permanent disability, partial, or complete temporary disability. Vesical dysfunction occurs in each category. At the time of injury it is not possible to determine to what extent the cord is damaged. Neither is it possible to determine the type nor to estimate the duration of bladder dysfunction. Treatment in this phase must be considered in the light of three factors: (1) Prevention of ascending urinary tract infection; (2) protection of paralyzed muscle; (3) restoration of function. These types of treatment have been advocated. Each method emphasizes the importance of one of the three factors.

Young has advocated "no instrumentation" to prevent infection. This is the ideal method if spinal shock clears and normal voiding or automaticity develops within 48 hours. However, spinal shock does not always clear within 48 hours; the overstretched muscle does not respond to normal stimulus and overflow incontinence rather than automatic voiding occurs. We are all familiar with the possibility of infection of residual urine.

Many neurosurgeons and urologists demand drainage of the bladder after spinal injury, to prevent overstretching of the paralyzed muscle. Either continuous catheter or suprapubic drainage had been instituted in all of our cases transferred from other Army hospitals. Obviously cystitis results and prevention of ascending infection depends upon the well functioning tube. Some of our patients had catheter drainage initially and this was replaced by cystostomy on transfer to another hospital. Several patients had suprapubic drains removed by other hospitals to which they were transferred, to be replaced by the urethral catheter with tidal drainage. We are convinced that suprapubic drainage is not
the ideal method and should not be used routinely. Although much has been written about placing the tube high at the vault of the bladder, common practice is to place the tube close to the symphysis pubis. Stab wound cystostomy is not adequate in these cases.

Monroe and Hahn have advocated tidal drainage. Some urologists have gained the impression that all that is necessary in case of spinal injury is the insertion of a retention catheter with tidal irrigation; that ascending infection is prevented, urethritis reduced to a minimum, and restoration of function follows. Monroe has stated that tidal drainage is not indicated in all cases. Our experience with various modifications of the Monroe apparatus is that the bladder is not always emptied after the syphonage, either due to the change of position of the patient or due to air trapping. Irrigation of the bladder must be used as an adjunct.

Certainly continuous bladder drainage with or without tidal irrigation is not indicated after simple spinal shock. We would therefore practice "no instrumentation" for at least 24 hours after injury. The bladder does not become palpably distended unless large quantities of intravenous or subcutaneous fluid have been given. If the patient has not passed any urine and the bladder is palpably distended, we would catheterize using the strictest aseptic technique. If, following this decompression, the patient cannot void, and a second catheterization is necessary, we would leave the tube in place for continuous drainage. Irrigation pressures must not exceed 12 mm Hg whether tidal or intermittent irrigation is used. Mercurial drugs must not be used for continuous or massive irrigations. We prefer acid solutions such as boric acid, Suby's solution, or buffered citrate. The catheter must be changed at least every fifth day. We have usually used a No. 20 Foley bag retention catheter. It is our impression that more incrustation occurs on these latex catheters than on the old red rubber ones. However, this difficulty can be overcome by frequent change of the tube, and the advantage of the Foley catheter outweighs its disadvantage. Me- notomy must be performed if narrowing exists. The catheter must be of adequate size but not too large. Paralyzed tissues will not tolerate pressure. For this reason bed sores are frequent and urethritis and periurethral slough is common. Certainly great care in the passage of catheters and maintenance of adequate catheter drainage is of utmost importance.

After long periods of urethral catheter drainage, eight periurethral abscesses have occurred in our cases. All have been located at the penoserosal junction. When not contraindicated, we have done perineal urethrostomy. This is accomplished without anesthesia, by making a one-inch incision in the bulb over a sound, bulging the urethra toward the perineum. All tissue down to the sound is divided in one stroke. The urethral edges are grasped with Allis clamps while a large de Pezzer or a Malecot tube is passed through the external sphincter and prostatic urethra into the bladder. After the initial dressing none is required. The tube is very easy to change. When drainage is discontinued the catheter may be removed, and the patient voids through the urethra at intervals. We recognize there are contraindications to this method, such as the occasion of prostatitis and prostatic abscess, bed sores. These patients are able to urinate by clamping the leg.

The cases described in table 1 are those of treatment in neurologic bladder dysfunction. Ten cases of complete transverse injuries of the spinal cord were studied. In these cases the bladder was atonic and the bulb drained by intermittent catheterization. In seven cases of incomplete lesion segmental loss of reflex activity below the level of the injury allowed return of reflex voiding 47 days after injury. Four types of incontinence must hence results from complete loss of sensation or voluntary or automatic voiding. In these cases of incontinence the following principles are recog-
prostatic abscess, but we have been well pleased with the procedure. These patients are able to walk with support or crutches, without urinary leakage by clamping the tube or allowing it to drain into an urinal strapped to the leg.

The cases described in table 1 are used to illustrate the types of lesion and results of treatment in neurologic bladder dysfunction.

Ten cases of complete transverse lesions of the spinal cord are outlined. In 2 instances the nutrient arteries of the cord were severed, resulting in degeneration below the site of injury. The 1 patient with a lesion at C-VII died. The 1 case with transverse section by compression at D-V, is alive but there has been no return of reflex activity 2 years after injury. Five had complete transverse myelitis at the levels of D-IV, D-V, D-IX and D-X. All of these patients developed automatic voiding from 4 to 6 months after injury. Three had complete severance of the cord at the level of L-I. None of these developed any reflex bladder activity other than inefficient myoneural contractions.

Five cases of incomplete lesion of the cord are outlined. Two of these patients had complete severance of bladder innervation at levels of D-I and D-V. Both developed efficient automatic bladders 1 and 2 months after laminectomy and decompression of the cord. One patient had a tabetic type of bladder lesion following compression at D-VII. There has been no return of bladder sensation and no reflex activity one year after injury. Two patients had incomplete lesions of the cord at L-I. Both developed uncontrolled voiding within one month after decompression of the cord. Urination is urgent in both cases and cannot be interrupted, due to loss of external sphincter innervation. Neither has any residual urine.

The value of early decompression of the cord is illustrated by a patient who suffered complete loss of sensation and reflex activity below L-I, produced by compression fracture of L-I. Laminectomy and decompression of the cord 6 days after injury allowed return of reflex activity 21 days after operation and normal voiding 47 days after injury.

Four types of incontinence must be differentiated. Complete total incontinence results from complete loss of urethral and sphincteric resistance. Paraplegic or overflow incontinence is caused by division of the sensory pathways which transmit stretch sensation, as in tabes. The incontinence of urgency and frequency, with or without loss of external sphincter innervation, is described. Voluntary or automatic voiding occurs after complete section of the bladder innervation above the level of L-I.

The following principles are recommended in the urological care of patients following spinal injury:

1. No instrumentation for 24 hours.
2. Absolute aseptic catheterization at 24 hours if necessary.
3. The use of urethral retention catheter if 2d catheterization is necessary.
4. The use of intermittent or tidal irrigation of the bladder with acid solutions to prevent incrustation cystitis.
5. Perineal urethrostomy in selected cases.
<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE OF INJURY</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>TYPE OF INJURY</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Case</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>
6. The use of a well placed suprapubic tube when definitely indicated for long
or permanent bladder drainage. This is indicated in complete transverse
lesions below L-I. Six weeks is about the limit of tolerance of the urethra
to catheter drainage.

We have no quarrel with those who would adequately drain neurological
bladders with large amounts of residual urine. Certainly this is not an emergency
procedure that should not be done at the front nor in evacuation hospitals unless
traumatic injury complicates the picture. We would not do cystostomy until
neurological examination and/or surgery shows that function will not be restored
for a long period of time. A well placed suprapubic tube will do no harm.

The question of when to discontinue drainage is not so easily answered. One
hesitates to remove the tube and allow the patient to suffer in a wet bed for
days until the wound heals. We have found cystometry of great value in deter-
mining the return of function or reflex activity. We do not remove the drain
until adequate reflex responses to pressures of 12 mm Hg indicate return of
function.

Permanent drainage may be indicated for patients with complete transverse
lesions at or below the level of L-I. Some patients with automaticity with large
amounts of infected residual urine may require drainage.

We do not believe that operations to remove tissue from the vesical orifice
are indicated unless actual obstruction exists. Certainly transurethral resection
is not indicated in the tabetic type of bladder with relaxation of the orifice unless
fibrous contraction or prostatism is present. When obstruction is present every
possible reason for resection exists (Emmett).

The indications for presacral neurectomy are not clear-cut. When the det-
ru sor tone is poor, residual urine is present and the ejaculatory function is of
no concern to the patient, we would consider the procedure as experimental.
Increased tone of the detrusor, produced by increased blood supply, results from
the operation of sympathectomy. Some excellent results have been obtained
but not for the reasons brought out by Learmonth and others. Transurethral
resection, not presacral neurectomy, is indicated for relief of obstruction or con-
tracture of the vesical orifice.

In our opinion patients would be more comfortable with an adequate cy-
stomcy tube than with total incontinence as after resection to eliminate urethral
resistance and sphincteric action.

The care of patients after severe cerebrospinal injury requires close co-
operation between the neurosurgeon and the urologist. From our experience the
prognosis is most uncertain for several months after injury. Restoration of func-
tion may follow neurosurgical or postural correction of compression factors.
Surgical exploration of the cord is indicated when function fails to return within
48 hours after injury and blockage of the spinal canal is demonstrated by lumbar
puncture and the Queckenstadt test. When improvement is noted, surgery may
be delayed. Surgery is indicated for relief of compression on the cord. Surgical
exploration is the only means of differentiating complete transverse section of

the cord from compression myelit. A surgeon is safe, can do no harm, a
of function unless division of the fil

R

BARRINGER, B. S. AND MCKEE, G. M.:
BARRINGTON, F. J. P.: The component
1931.
DEES, J. E. AND LANGWORTHY, O. R.
alogous to those of tabes dorsalis
EMMETT, JOHN L.: Urinary retention fit
ment by transurethral resection.
GRIFFITHS, J.: Observations on the ur
29: 6 and 254, 1894-1895.
GRIFFITHS, J.: Observations on the ur
25: 535, 1891.
KOEHLER, E.: Zur Anatomie und Phys
LANGWORTHY, O. R., DEES, J. E. AND L
motor pathways in nervous system
LANGWORTHY, O. R., KOLLE, L. C. AND L
The Williams & Wilkins Co., 1949.
LEARMOUTH, J. R.: Neurosurgery in t
LEARMOUTH, J. R.: Neurosurgery in c
270, 1932.
LEARMOUTH, J. R.: The value of neuro
LEEDHAM-GREEN, C.: On the vesical i
MINNE, D. AND HAHN, J.: Tidal drai
212: 229, 1935.
ROSENTHAL, L.: De tono cutis muscular
Dis. Physiologica. (See Cecil).
URLE, A. AND MACKINNEY, W.: Obsei
and Cuban Rev. (Tech. Suppl.), 1: 12.
VOLCKER, F. AND LIEFFENBERG, A.: D
bile, Munich, Med. Wchnschr., 3
WASSON, M. B.: Anatomical, embroyol.
Young's Practice of Urology. Phila., V
then definitely indicated for long
indicated in complete transverse
limit of tolerance of the
adequately drain neurological
function will not be restored
ubic tube will do no harm.
ne:urc•lo£r•w$,J
is not so easily answered. One
sents with complete transverse
nts have been obtained
obstruction is present every
not clear-cut. When the de-
the ejaculatory function is of
the procedure as experimental-
results from ent results have not be obtained
Transurethral
for relief of obstruction or con-
fortable with an adequate cyst-
section to eliminate urethral
injury requires close co-oper-
gist. From our experience the
ter injury. Restoration of func-
tion of compression factors.
function fails to return within
anal is demonstrated by lumbar
 movement is noted, surgery may
pression on the cord. Surgical

the cord from compression myelitis. The operation done by a qualified neuro-
surgeon is safe, can do no harm and certainly offers the patient hope of return
function unless division of the fibers is proven.

REFERENCES

BLA.DDER DYSFUNCTION TREATMENT AFTER NEUROLOGIC TRAUMA - 295

HARRISON, B. S. AND MCKEE, G. M.: Radiographs of the bladder and bladder neck. Tr.
HARRINGTON, F. J. F.: The component reflexes of micturition in the cat. Brain, 54: 177,

DRESS, J. E. AND LANGWORTHY, O. R.: An experimental study of bladder disturbances
EMMETT, JOHN L.: Urinary retention from imbalance of detrusor and vesical neck. Treat-
35: 535, 1891.
LANGWORTHY, O. R., DRESS, J. E. AND LEWIS, L. G.: Bladder abnormalities due to injury of
The Williams & Wilkins Co., 1940.
270, 1932.
LEARMONTH, J. R.: The value of neurosurgery in certain vesical conditions. J. A. M. A.,
LEEDHAM-GREER, C.: On the vesical sphincter and the mechanism of the closure of the
212: 229, 1935.
ROSCHERL, L.: De tono eti musculorum tum eo imprimit qui sphinctorum tomi voeator.
Diss. Physiologica. (See Cecil.) 1857.
VEIß, P. AND LICHTENBERG, A.: Die Gestalt der menschlichen Harnblase in Roentgen-
WISSEN, M. B.: Anatomical, embryological and physiological studies of the trigone and